
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors

Chien-Yao Wang1, Alexey Bochkovskiy, and Hong-Yuan Mark Liao1

1Institute of Information Science, Academia Sinica, Taiwan
kinyiu@iis.sinica.edu.tw, alexeyab84@gmail.com, and liao@iis.sinica.edu.tw

Abstract
YOLOv7 surpasses all known object detectors in both

speed and accuracy in the range from 5 FPS to 160 FPS
and has the highest accuracy 56.8% AP among all known
real-time object detectors with 30 FPS or higher on GPU
V100. YOLOv7-E6 object detector (56 FPS V100, 55.9%
AP) outperforms both transformer-based detector SWIN-
L Cascade-Mask R-CNN (9.2 FPS A100, 53.9% AP) by
509% in speed and 2% in accuracy, and convolutional-
based detector ConvNeXt-XL Cascade-Mask R-CNN (8.6
FPS A100, 55.2% AP) by 551% in speed and 0.7% AP
in accuracy, as well as YOLOv7 outperforms: YOLOR,
YOLOX, Scaled-YOLOv4, YOLOv5, DETR, Deformable
DETR, DINO-5scale-R50, ViT-Adapter-B and many other
object detectors in speed and accuracy. Moreover, we train
YOLOv7 only on MS COCO dataset from scratch without
using any other datasets or pre-trained weights. Source
code is released in https://github.com/WongKinYiu/yolov7.

1. Introduction
Real-time object detection is a very important topic in

computer vision, as it is often a necessary component in
computer vision systems. For example, multi-object track-
ing [94, 93], autonomous driving [40, 18], robotics [35, 58],
medical image analysis [34, 46], etc. The computing de-
vices that execute real-time object detection is usually some
mobile CPU or GPU, as well as various neural processing
units (NPU) developed by major manufacturers. For exam-
ple, the Apple neural engine (Apple), the neural compute
stick (Intel), Jetson AI edge devices (Nvidia), the edge TPU
(Google), the neural processing engine (Qualcomm), the AI
processing unit (MediaTek), and the AI SoCs (Kneron), are
all NPUs. Some of the above mentioned edge devices focus
on speeding up different operations such as vanilla convolu-
tion, depth-wise convolution, or MLP operations. In this pa-
per, the real-time object detector we proposed mainly hopes
that it can support both mobile GPU and GPU devices from
the edge to the cloud.

In recent years, the real-time object detector is still de-
veloped for different edge device. For example, the devel-

Figure 1: Comparison with other real-time object detectors, our
proposed methods achieve state-of-the-arts performance.

opment of MCUNet [49, 48] and NanoDet [54] focused on
producing low-power single-chip and improving the infer-
ence speed on edge CPU. As for methods such as YOLOX
[21] and YOLOR [81], they focus on improving the infer-
ence speed of various GPUs. More recently, the develop-
ment of real-time object detector has focused on the de-
sign of efficient architecture. As for real-time object de-
tectors that can be used on CPU [54, 88, 84, 83], their de-
sign is mostly based on MobileNet [28, 66, 27], ShuffleNet
[92, 55], or GhostNet [25]. Another mainstream real-time
object detectors are developed for GPU [81, 21, 97], they
mostly use ResNet [26], DarkNet [63], or DLA [87], and
then use the CSPNet [80] strategy to optimize the architec-
ture. The development direction of the proposed methods in
this paper are different from that of the current mainstream
real-time object detectors. In addition to architecture op-
timization, our proposed methods will focus on the opti-
mization of the training process. Our focus will be on some
optimized modules and optimization methods which may
strengthen the training cost for improving the accuracy of
object detection, but without increasing the inference cost.
We call the proposed modules and optimization methods
trainable bag-of-freebies.

1

https://github.com/WongKinYiu/yolov7


Recently, model re-parameterization [13, 12, 29] and dy-
namic label assignment [20, 17, 42] have become important
topics in network training and object detection. Mainly af-
ter the above new concepts are proposed, the training of
object detector evolves many new issues. In this paper, we
will present some of the new issues we have discovered and
devise effective methods to address them. For model re-
parameterization, we analyze the model re-parameterization
strategies applicable to layers in different networks with the
concept of gradient propagation path, and propose planned
re-parameterized model. In addition, when we discover that
with dynamic label assignment technology, the training of
model with multiple output layers will generate new issues.
That is: “How to assign dynamic targets for the outputs of
different branches?” For this problem, we propose a new
label assignment method called coarse-to-fine lead guided
label assignment.

The contributions of this paper are summarized as fol-
lows: (1) we design several trainable bag-of-freebies meth-
ods, so that real-time object detection can greatly improve
the detection accuracy without increasing the inference
cost; (2) for the evolution of object detection methods, we
found two new issues, namely how re-parameterized mod-
ule replaces original module, and how dynamic label as-
signment strategy deals with assignment to different output
layers. In addition, we also propose methods to address the
difficulties arising from these issues; (3) we propose “ex-
tend” and “compound scaling” methods for the real-time
object detector that can effectively utilize parameters and
computation; and (4) the method we proposed can effec-
tively reduce about 40% parameters and 50% computation
of state-of-the-art real-time object detector, and has faster
inference speed and higher detection accuracy.

2. Related work

2.1. Real-time object detectors

Currently state-of-the-art real-time object detectors are
mainly based on YOLO [61, 62, 63] and FCOS [76, 77],
which are [3, 79, 81, 21, 54, 85, 23]. Being able to become
a state-of-the-art real-time object detector usually requires
the following characteristics: (1) a faster and stronger net-
work architecture; (2) a more effective feature integration
method [22, 97, 37, 74, 59, 30, 9, 45]; (3) a more accurate
detection method [76, 77, 69]; (4) a more robust loss func-
tion [96, 64, 6, 56, 95, 57]; (5) a more efficient label assign-
ment method [99, 20, 17, 82, 42]; and (6) a more efficient
training method. In this paper, we do not intend to explore
self-supervised learning or knowledge distillation methods
that require additional data or large model. Instead, we will
design new trainable bag-of-freebies method for the issues
derived from the state-of-the-art methods associated with
(4), (5), and (6) mentioned above.

2.2. Model re-parameterization

Model re-parametrization techniques [71, 31, 75, 19, 33,
11, 4, 24, 13, 12, 10, 29, 14, 78] merge multiple compu-
tational modules into one at inference stage. The model
re-parameterization technique can be regarded as an en-
semble technique, and we can divide it into two cate-
gories, i.e., module-level ensemble and model-level ensem-
ble. There are two common practices for model-level re-
parameterization to obtain the final inference model. One
is to train multiple identical models with different train-
ing data, and then average the weights of multiple trained
models. The other is to perform a weighted average of the
weights of models at different iteration number. Module-
level re-parameterization is a more popular research issue
recently. This type of method splits a module into multi-
ple identical or different module branches during training
and integrates multiple branched modules into a completely
equivalent module during inference. However, not all pro-
posed re-parameterized module can be perfectly applied to
different architectures. With this in mind, we have devel-
oped new re-parameterization module and designed related
application strategies for various architectures.

2.3. Model scaling

Model scaling [72, 60, 74, 73, 15, 16, 2, 51] is a way
to scale up or down an already designed model and make
it fit in different computing devices. The model scaling
method usually uses different scaling factors, such as reso-
lution (size of input image), depth (number of layer), width
(number of channel), and stage (number of feature pyra-
mid), so as to achieve a good trade-off for the amount of
network parameters, computation, inference speed, and ac-
curacy. Network architecture search (NAS) is one of the
commonly used model scaling methods. NAS can automat-
ically search for suitable scaling factors from search space
without defining too complicated rules. The disadvantage
of NAS is that it requires very expensive computation to
complete the search for model scaling factors. In [15], the
researcher analyzes the relationship between scaling factors
and the amount of parameters and operations, trying to di-
rectly estimate some rules, and thereby obtain the scaling
factors required by model scaling. Checking the literature,
we found that almost all model scaling methods analyze in-
dividual scaling factor independently, and even the methods
in the compound scaling category also optimized scaling
factor independently. The reason for this is because most
popular NAS architectures deal with scaling factors that are
not very correlated. We observed that all concatenation-
based models, such as DenseNet [32] or VoVNet [39], will
change the input width of some layers when the depth of
such models is scaled. Since the proposed architecture is
concatenation-based, we have to design a new compound
scaling method for this model.

2



Figure 2: Extended efficient layer aggregation networks. The proposed extended ELAN (E-ELAN) does not change the gradient transmis-
sion path of the original architecture at all, but use group convolution to increase the cardinality of the added features, and combine the
features of different groups in a shuffle and merge cardinality manner. This way of operation can enhance the features learned by different
feature maps and improve the use of parameters and calculations.

3. Architecture

3.1. Extended efficient layer aggregation networks

In most of the literature on designing the efficient ar-
chitectures, the main considerations are no more than the
number of parameters, the amount of computation, and the
computational density. Starting from the characteristics of
memory access cost, Ma et al. [55] also analyzed the in-
fluence of the input/output channel ratio, the number of
branches of the architecture, and the element-wise opera-
tion on the network inference speed. Dollár et al. [15] addi-
tionally considered activation when performing model scal-
ing, that is, to put more consideration on the number of el-
ements in the output tensors of convolutional layers. The
design of CSPVoVNet [79] in Figure 2 (b) is a variation of
VoVNet [39]. In addition to considering the aforementioned
basic designing concerns, the architecture of CSPVoVNet
[79] also analyzes the gradient path, in order to enable the
weights of different layers to learn more diverse features.
The gradient analysis approach described above makes in-
ferences faster and more accurate. ELAN [1] in Figure 2 (c)
considers the following design strategy – “How to design an
efficient network?.” They came out with a conclusion: By
controlling the longest shortest gradient path, a deeper net-
work can learn and converge effectively. In this paper, we
propose Extended-ELAN (E-ELAN) based on ELAN and
its main architecture is shown in Figure 2 (d).

Regardless of the gradient path length and the stacking
number of computational blocks in large-scale ELAN, it has
reached a stable state. If more computational blocks are
stacked unlimitedly, this stable state may be destroyed, and
the parameter utilization rate will decrease. The proposed

E-ELAN uses expand, shuffle, merge cardinality to achieve
the ability to continuously enhance the learning ability of
the network without destroying the original gradient path.
In terms of architecture, E-ELAN only changes the archi-
tecture in computational block, while the architecture of
transition layer is completely unchanged. Our strategy is
to use group convolution to expand the channel and car-
dinality of computational blocks. We will apply the same
group parameter and channel multiplier to all the compu-
tational blocks of a computational layer. Then, the feature
map calculated by each computational block will be shuf-
fled into g groups according to the set group parameter g,
and then concatenate them together. At this time, the num-
ber of channels in each group of feature map will be the
same as the number of channels in the original architec-
ture. Finally, we add g groups of feature maps to perform
merge cardinality. In addition to maintaining the original
ELAN design architecture, E-ELAN can also guide differ-
ent groups of computational blocks to learn more diverse
features.

3.2. Model scaling for concatenation-based models

The main purpose of model scaling is to adjust some at-
tributes of the model and generate models of different scales
to meet the needs of different inference speeds. For ex-
ample the scaling model of EfficientNet [72] considers the
width, depth, and resolution. As for the scaled-YOLOv4
[79], its scaling model is to adjust the number of stages. In
[15], Dollár et al. analyzed the influence of vanilla convolu-
tion and group convolution on the amount of parameter and
computation when performing width and depth scaling, and
used this to design the corresponding model scaling method.

3



Figure 3: Model scaling for concatenation-based models. From (a) to (b), we observe that when depth scaling is performed on
concatenation-based models, the output width of a computational block also increases. This phenomenon will cause the input width
of the subsequent transmission layer to increase. Therefore, we propose (c), that is, when performing model scaling on concatenation-
based models, only the depth in a computational block needs to be scaled, and the remaining of transmission layer is performed with
corresponding width scaling.

The above methods are mainly used in architectures such as
PlainNet or ResNet. When these architectures are in execut-
ing scaling up or scaling down, the in-degree and out-degree
of each layer will not change, so we can independently an-
alyze the impact of each scaling factor on the amount of
parameters and computation. However, if these methods
are applied to the concatenation-based architecture, we will
find that when scaling up or scaling down is performed on
depth, the in-degree of a translation layer which is immedi-
ately after a concatenation-based computational block will
decrease or increase, as shown in Figure 3 (a) and (b).

It can be inferred from the above phenomenon that
we cannot analyze different scaling factors separately for
a concatenation-based model but must be considered to-
gether. Take scaling-up depth as an example, such an ac-
tion will cause a ratio change between the input channel and
output channel of a transition layer, which may lead to a de-
crease in the hardware usage of the model. Therefore, we
must propose the corresponding compound model scaling
method for a concatenation-based model. When we scale
the depth factor of a computational block, we must also cal-
culate the change of the output channel of that block. Then,
we will perform width factor scaling with the same amount
of change on the transition layers, and the result is shown
in Figure 3 (c). Our proposed compound scaling method
can maintain the properties that the model had at the initial
design and maintains the optimal structure.

4. Trainable bag-of-freebies

4.1. Planned re-parameterized convolution

Although RepConv [13] has achieved excellent perfor-
mance on the VGG [68], when we directly apply it to
ResNet [26] and DenseNet [32] and other architectures,
its accuracy will be significantly reduced. We use gradi-
ent flow propagation paths to analyze how re-parameterized
convolution should be combined with different network.
We also designed planned re-parameterized convolution ac-
cordingly.

Figure 4: Planned re-parameterized model. In the proposed
planned re-parameterized model, we found that a layer with resid-
ual or concatenation connections, its RepConv should not have
identity connection. Under these circumstances, it can be replaced
by RepConvN that contains no identity connections.

RepConv actually combines 3 × 3 convolution, 1 × 1
convolution, and identity connection in one convolutional
layer. After analyzing the combination and correspond-
ing performance of RepConv and different architectures,
we find that the identity connection in RepConv destroys
the residual in ResNet and the concatenation in DenseNet,
which provides more diversity of gradients for different fea-
ture maps. For the above reasons, we use RepConv with-
out identity connection (RepConvN) to design the architec-
ture of planned re-parameterized convolution. In our think-
ing, when a convolutional layer with residual or concate-
nation is replaced by re-parameterized convolution, there
should be no identity connection. Figure 4 shows an exam-
ple of our designed “planned re-parameterized convolution”
used in PlainNet and ResNet. As for the complete planned
re-parameterized convolution experiment in residual-based
model and concatenation-based model, it will be presented
in the ablation study session.

4



Figure 5: Coarse for auxiliary and fine for lead head label assigner. Compare with normal model (a), the schema in (b) has auxiliary head.
Different from the usual independent label assigner (c), we propose (d) lead head guided label assigner and (e) coarse-to-fine lead head
guided label assigner. The proposed label assigner is optimized by lead head prediction and the ground truth to get the labels of training
lead head and auxiliary head at the same time. The detailed coarse-to-fine implementation method and constraint design details will be
elaborated in Apendix.

4.2. Coarse for auxiliary and fine for lead loss

Deep supervision [38] is a technique that is often used
in training deep networks. Its main concept is to add
extra auxiliary head in the middle layers of the network,
and the shallow network weights with assistant loss as the
guide. Even for architectures such as ResNet [26] and
DenseNet [32] which usually converge well, deep supervi-
sion [70, 98, 67, 47, 82, 65, 86, 50] can still significantly
improve the performance of the model on many tasks. Fig-
ure 5 (a) and (b) show, respectively, the object detector ar-
chitecture “without” and “with” deep supervision. In this
paper, we call the head responsible for the final output as
the lead head, and the head used to assist training is called
auxiliary head.

Next we want to discuss the issue of label assignment. In
the past, in the training of deep network, label assignment
usually refers directly to the ground truth and generate hard
label according to the given rules. However, in recent years,
if we take object detection as an example, researchers often
use the quality and distribution of prediction output by the
network, and then consider together with the ground truth to
use some calculation and optimization methods to generate
a reliable soft label [61, 8, 36, 99, 91, 44, 43, 90, 20, 17, 42].
For example, YOLO [61] use IoU of prediction of bounding
box regression and ground truth as the soft label of object-
ness. In this paper, we call the mechanism that considers
the network prediction results together with the ground truth
and then assigns soft labels as “label assigner.”

Deep supervision needs to be trained on the target ob-
jectives regardless of the circumstances of auxiliary head or
lead head. During the development of soft label assigner re-
lated techniques, we accidentally discovered a new deriva-
tive issue, i.e., “How to assign soft label to auxiliary head
and lead head ?” To the best of our knowledge, the relevant
literature has not explored this issue so far. The results of
the most popular method at present is as shown in Figure 5
(c), which is to separate auxiliary head and lead head, and
then use their own prediction results and the ground truth

to execute label assignment. The method proposed in this
paper is a new label assignment method that guides both
auxiliary head and lead head by the lead head prediction.
In other words, we use lead head prediction as guidance to
generate coarse-to-fine hierarchical labels, which are used
for auxiliary head and lead head learning, respectively. The
two proposed deep supervision label assignment strategies
are shown in Figure 5 (d) and (e), respectively.

Lead head guided label assigner is mainly calculated
based on the prediction result of the lead head and the
ground truth, and generate soft label through the optimiza-
tion process. This set of soft labels will be used as the tar-
get training model for both auxiliary head and lead head.
The reason to do this is because lead head has a relatively
strong learning capability, so the soft label generated from it
should be more representative of the distribution and corre-
lation between the source data and the target. Furthermore,
we can view such learning as a kind of generalized residual
learning. By letting the shallower auxiliary head directly
learn the information that lead head has learned, lead head
will be more able to focus on learning residual information
that has not yet been learned.

Coarse-to-fine lead head guided label assigner also
used the predicted result of the lead head and the ground
truth to generate soft label. However, in the process we gen-
erate two different sets of soft label, i.e., coarse label and
fine label, where fine label is the same as the soft label gen-
erated by lead head guided label assigner, and coarse label
is generated by allowing more grids to be treated as posi-
tive target by relaxing the constraints of the positive sample
assignment process. The reason for this is that the learning
ability of an auxiliary head is not as strong as that of a lead
head, and in order to avoid losing the information that needs
to be learned, we will focus on optimizing the recall of aux-
iliary head in the object detection task. As for the output
of lead head, we can filter the high precision results from
the high recall results as the final output. However, we must
note that if the additional weight of coarse label is close to

5



Table 1: Comparison of baseline object detectors.

Model #Param. FLOPs Size APval APval
50 APval

75 APval
S APval

M APval
L

YOLOv4 [3] 64.4M 142.8G 640 49.7% 68.2% 54.3% 32.9% 54.8% 63.7%
YOLOR-u5 (r6.1) [81] 46.5M 109.1G 640 50.2% 68.7% 54.6% 33.2% 55.5% 63.7%
YOLOv4-CSP [79] 52.9M 120.4G 640 50.3% 68.6% 54.9% 34.2% 55.6% 65.1%
YOLOR-CSP [81] 52.9M 120.4G 640 50.8% 69.5% 55.3% 33.7% 56.0% 65.4%
YOLOv7 36.9M 104.7G 640 51.2% 69.7% 55.5% 35.2% 56.0% 66.7%
improvement -43% -15% - +0.4 +0.2 +0.2 +1.5 = +1.3

YOLOR-CSP-X [81] 96.9M 226.8G 640 52.7% 71.3% 57.4% 36.3% 57.5% 68.3%
YOLOv7-X 71.3M 189.9G 640 52.9% 71.1% 57.5% 36.9% 57.7% 68.6%
improvement -36% -19% - +0.2 -0.2 +0.1 +0.6 +0.2 +0.3

YOLOv4-tiny [79] 6.1 6.9 416 24.9% 42.1% 25.7% 8.7% 28.4% 39.2%
YOLOv7-tiny 6.2 5.8 416 35.2% 52.8% 37.3% 15.7% 38.0% 53.4%
improvement +2% -19% - +10.3 +10.7 +11.6 +7.0 +9.6 +14.2

YOLOv4-tiny-3l [79] 8.7 5.2 320 30.8% 47.3% 32.2% 10.9% 31.9% 51.5%
YOLOv7-tiny 6.2 3.5 320 30.8% 47.3% 32.2% 10.0% 31.9% 52.2%
improvement -39% -49% - = = = -0.9 = +0.7

YOLOR-E6 [81] 115.8M 683.2G 1280 55.7% 73.2% 60.7% 40.1% 60.4% 69.2%
YOLOv7-E6 97.2M 515.2G 1280 55.9% 73.5% 61.1% 40.6% 60.3% 70.0%
improvement -19% -33% - +0.2 +0.3 +0.4 +0.5 -0.1 +0.8

YOLOR-D6 [81] 151.7M 935.6G 1280 56.1% 73.9% 61.2% 42.4% 60.5% 69.9%
YOLOv7-D6 154.7M 806.8G 1280 56.3% 73.8% 61.4% 41.3% 60.6% 70.1%
YOLOv7-E6E 151.7M 843.2G 1280 56.8% 74.4% 62.1% 40.8% 62.1% 70.6%
improvement = -11% - +0.7 +0.5 +0.9 -1.6 +1.6 +0.7

that of fine label, it may produce bad prior at final predic-
tion. Therefore, in order to make those extra coarse positive
grids have less impact, we put restrictions in the decoder,
so that the extra coarse positive grids cannot produce soft
label perfectly. The mechanism mentioned above allows
the importance of fine label and coarse label to be dynam-
ically adjusted during the learning process, and makes the
optimizable upper bound of fine label always higher than
coarse label.

4.3. Other trainable bag-of-freebies

In this section we will list some trainable bag-of-
freebies. These freebies are some of the tricks we used
in training, but the original concepts were not proposed
by us. The training details of these freebies will be elab-
orated in the Appendix, including (1) Batch normalization
in conv-bn-activation topology: This part mainly connects
batch normalization layer directly to convolutional layer.
The purpose of this is to integrate the mean and variance
of batch normalization into the bias and weight of convolu-
tional layer at the inference stage. (2) Implicit knowledge
in YOLOR [81] combined with convolution feature map in
addition and multiplication manner: Implicit knowledge in
YOLOR can be simplified to a vector by pre-computing at
the inference stage. This vector can be combined with the
bias and weight of the previous or subsequent convolutional
layer. (3) EMA model: EMA is a technique used in mean
teacher [75], and in our system we use EMA model purely
as the final inference model.

5. Experiments
5.1. Experimental setup

We use Microsoft COCO dataset to conduct experiments
and validate our object detection method. All our experi-
ments did not use pre-trained models. That is, all models
were trained from scratch. During the development pro-
cess, we used train 2017 set for training, and then used val
2017 set for verification and choosing hyperparameters. Fi-
nally, we show the performance of object detection on the
test 2017 set and compare it with the state-of-the-art object
detection algorithms. Detailed training parameter settings
are described in Appendix.

We designed basic model for edge GPU, normal GPU,
and cloud GPU, and they are respectively called YOLOv7-
tiny, YOLOv7, and YOLOv7-W6. At the same time, we
also use basic model for model scaling for different ser-
vice requirements and get different types of models. For
YOLOv7, we do stack scaling on neck, and use the pro-
posed compound scaling method to perform scaling-up of
the depth and width of the entire model, and use this to ob-
tain YOLOv7-X. As for YOLOv7-W6, we use the newly
proposed compound scaling method to obtain YOLOv7-E6
and YOLOv7-D6. In addition, we use the proposed E-
ELAN for YOLOv7-E6, and thereby complete YOLOv7-
E6E. Since YOLOv7-tiny is an edge GPU-oriented archi-
tecture, it will use leaky ReLU as activation function. As
for other models we use SiLU as activation function. We
will describe the scaling factor of each model in detail in
Appendix.

6



Table 2: Comparison of state-of-the-art real-time object detectors.

Model #Param. FLOPs Size FPS APtest / APval APtest
50 APtest

75 APtest
S APtest

M APtest
L

YOLOX-S [21] 9.0M 26.8G 640 102 40.5% / 40.5% - - - - -
YOLOX-M [21] 25.3M 73.8G 640 81 47.2% / 46.9% - - - - -
YOLOX-L [21] 54.2M 155.6G 640 69 50.1% / 49.7% - - - - -
YOLOX-X [21] 99.1M 281.9G 640 58 51.5% / 51.1% - - - - -

PPYOLOE-S [85] 7.9M 17.4G 640 208 43.1% / 42.7% 60.5% 46.6% 23.2% 46.4% 56.9%
PPYOLOE-M [85] 23.4M 49.9G 640 123 48.9% / 48.6% 66.5% 53.0% 28.6% 52.9% 63.8%
PPYOLOE-L [85] 52.2M 110.1G 640 78 51.4% / 50.9% 68.9% 55.6% 31.4% 55.3% 66.1%
PPYOLOE-X [85] 98.4M 206.6G 640 45 52.2% / 51.9% 69.9% 56.5% 33.3% 56.3% 66.4%

YOLOv5-N (r6.1) [23] 1.9M 4.5G 640 159 - / 28.0% - - - - -
YOLOv5-S (r6.1) [23] 7.2M 16.5G 640 156 - / 37.4% - - - - -
YOLOv5-M (r6.1) [23] 21.2M 49.0G 640 122 - / 45.4% - - - - -
YOLOv5-L (r6.1) [23] 46.5M 109.1G 640 99 - / 49.0% - - - - -
YOLOv5-X (r6.1) [23] 86.7M 205.7G 640 83 - / 50.7% - - - - -

YOLOR-CSP [81] 52.9M 120.4G 640 106 51.1% / 50.8% 69.6% 55.7% 31.7% 55.3% 64.7%
YOLOR-CSP-X [81] 96.9M 226.8G 640 87 53.0% / 52.7% 71.4% 57.9% 33.7% 57.1% 66.8%

YOLOv7-tiny-SiLU 6.2M 13.8G 640 286 38.7% / 38.7% 56.7% 41.7% 18.8% 42.4% 51.9%
YOLOv7 36.9M 104.7G 640 161 51.4% / 51.2% 69.7% 55.9% 31.8% 55.5% 65.0%
YOLOv7-X 71.3M 189.9G 640 114 53.1% / 52.9% 71.2% 57.8% 33.8% 57.1% 67.4%

YOLOv5-N6 (r6.1) [23] 3.2M 18.4G 1280 123 - / 36.0% - - - - -
YOLOv5-S6 (r6.1) [23] 12.6M 67.2G 1280 122 - / 44.8% - - - - -
YOLOv5-M6 (r6.1) [23] 35.7M 200.0G 1280 90 - / 51.3% - - - - -
YOLOv5-L6 (r6.1) [23] 76.8M 445.6G 1280 63 - / 53.7% - - - - -
YOLOv5-X6 (r6.1) [23] 140.7M 839.2G 1280 38 - / 55.0% - - - - -

YOLOR-P6 [81] 37.2M 325.6G 1280 76 53.9% / 53.5% 71.4% 58.9% 36.1% 57.7% 65.6%
YOLOR-W6 [81] 79.8G 453.2G 1280 66 55.2% / 54.8% 72.7% 60.5% 37.7% 59.1% 67.1%
YOLOR-E6 [81] 115.8M 683.2G 1280 45 55.8% / 55.7% 73.4% 61.1% 38.4% 59.7% 67.7%
YOLOR-D6 [81] 151.7M 935.6G 1280 34 56.5% / 56.1% 74.1% 61.9% 38.9% 60.4% 68.7%

YOLOv7-W6 70.4M 360.0G 1280 84 54.9% / 54.6% 72.6% 60.1% 37.3% 58.7% 67.1%
YOLOv7-E6 97.2M 515.2G 1280 56 56.0% / 55.9% 73.5% 61.2% 38.0% 59.9% 68.4%
YOLOv7-D6 154.7M 806.8G 1280 44 56.6% / 56.3% 74.0% 61.8% 38.8% 60.1% 69.5%
YOLOv7-E6E 151.7M 843.2G 1280 36 56.8% / 56.8% 74.4% 62.1% 39.3% 60.5% 69.0%

1 Our FLOPs is calaculated by rectangle input resolution like 640 × 640 or 1280 × 1280.
2 Our inference time is estimated by using letterbox resize input image to make its long side equals to 640 or 1280.

5.2. Baselines

We choose previous version of YOLO [3, 79] and state-
of-the-art object detector YOLOR [81] as our baselines. Ta-
ble 1 shows the comparison of our proposed YOLOv7 mod-
els and those baseline that are trained with the same settings.

From the results we see that if compared with YOLOv4,
YOLOv7 has 75% less parameters, 36% less computation,
and brings 1.5% higher AP. If compared with state-of-the-
art YOLOR-CSP, YOLOv7 has 43% fewer parameters, 15%
less computation, and 0.4% higher AP. In the performance
of tiny model, compared with YOLOv4-tiny-31, YOLOv7-
tiny reduces the number of parameters by 39% and the
amount of computation by 49%, but maintains the same AP.
On the cloud GPU model, our model can still have a higher
AP while reducing the number of parameters by 19% and
the amount of computation by 33%.

5.3. Comparison with state-of-the-arts

We compare the proposed method with state-of-the-art
object detectors for general GPUs and Mobile GPUs, and
the results are shown in Table 2. From the results in
Table 2 we know that the proposed method has the best
speed-accuracy trade-off comprehensively. If we compare
YOLOv7-tiny-SiLU with YOLOv5-N (r6.1), our method
is 127 fps faster and 10.7% more accurate on AP. In ad-
dition, YOLOv7 has 51.4% AP at frame rate of 161 fps,
while PPYOLOE-L with the same AP has only 78 fps frame
rate. In terms of parameter usage, YOLOv7 is 41% less than
PPYOLOE-L. If we compare YOLOv7-X with 114 fps in-
ference speed to YOLOv5-L (r6.1) with 99 fps inference
speed, YOLOv7-X can improve AP by 3.9%. If YOLOv7-
X is compared with YOLOv5-X (r6.1) of similar scale, the
inference speed of YOLOv7-X is 31 fps faster. In addi-
tion, in terms of the amount of parameters and computation,
YOLOv7-X reduces 22% of parameters and 8% of compu-
tation compared to YOLOv5-X (r6.1), but improves AP by
2.2%.

7



If we compare YOLOv7 with YOLOR using the input
resolution 1280, the inference speed of YOLOv7-W6 is 8
fps faster than that of YOLOR-P6, and the detection rate is
also increased by 1% AP. As for the comparison between
YOLOv7-E6 and YOLOv5-X6 (r6.1), the former has 0.9%
AP gain than the latter, 45% less parameters and 63% less
computation, and the inference speed is increased by 47%.
YOLOv7-D6 has close inference speed to YOLOR-E6, but
improves AP by 0.8%. YOLOv7-E6E has close inference
speed to YOLOR-D6, but improves AP by 0.3%.

5.4. Ablation study

5.4.1 Proposed compound scaling method

Table 3 shows the results obtained when using different
model scaling strategies for scaling up. Among them, our
proposed compound scaling method is to scale up the depth
of computational block by 1.5 times and the width of tran-
sition block by 1.25 times. If our method is compared with
the method that only scaled up the width, our method can
improve the AP by 0.5% with less parameters and amount
of computation. If our method is compared with the method
that only scales up the depth, our method only needs to in-
crease the number of parameters by 2.9% and the amount of
computation by 1.2%, which can improve the AP by 0.2%.
It can be seen from the results of Table 3 that our proposed
compound scaling strategy can utilize parameters and com-
putation more efficiently.

Table 3: Ablation study on proposed model scaling.

Model #Param. FLOPs Size APval APval
50 APval

75

base (v7-X light) 47.0M 125.5G 640 51.7% 70.1% 56.0%
width only (1.25 w) 73.4M 195.5G 640 52.4% 70.9% 57.1%
depth only (2.0 d) 69.3M 187.6G 640 52.7% 70.8% 57.3%
compound (v7-X) 71.3M 189.9G 640 52.9% 71.1% 57.5%
improvement - - - +1.2 +1.0 +1.5

5.4.2 Proposed planned re-parameterized model

In order to verify the generality of our proposed planed
re-parameterized model, we use it on concatenation-based
model and residual-based model respectively for verifica-
tion. The concatenation-based model and residual-based
model we chose for verification are 3-stacked ELAN and
CSPDarknet, respectively.

In the experiment of concatenation-based model, we re-
place the 3× 3 convolutional layers in different positions in
3-stacked ELAN with RepConv, and the detailed configura-
tion is shown in Figure 6. From the results shown in Table 4
we see that all higher AP values are present on our proposed
planned re-parameterized model.

In the experiment dealing with residual-based model,
since the original dark block does not have a 3 × 3 con-

Figure 6: Planned RepConv 3-stacked ELAN. Blue circles are the
position we replace Conv by RepConv.

Table 4: Ablation study on planned RepConcatenation model.

Model APval APval
50 APval

75 APval
S APval

M APval
L

base (3-S ELAN) 52.26% 70.41% 56.77% 35.81% 57.00% 67.59%
Figure 6 (a) 52.18% 70.34% 56.90% 35.71% 56.83% 67.51%
Figure 6 (b) 52.30% 70.30% 56.92% 35.76% 56.95% 67.74%
Figure 6 (c) 52.33% 70.56% 56.91% 35.90% 57.06% 67.50%
Figure 6 (d) 52.17% 70.32% 56.82% 35.33% 57.06% 68.09%
Figure 6 (e) 52.23% 70.20% 56.81% 35.34% 56.97% 66.88%

volution block that conforms to our design strategy, we ad-
ditionally design a reversed dark block for the experiment,
whose architecture is shown in Figure 7. Since the CSP-
Darknet with dark block and reversed dark block has exactly
the same amount of parameters and operations, it is fair to
compare. The experiment results illustrated in Table 5 fully
confirm that the proposed planned re-parameterized model
is equally effective on residual-based model. We find that
the design of RepCSPResNet [85] also fit our design pat-
tern.

Figure 7: Reversed CSPDarknet. We reverse the position of 1× 1
and 3 × 3 convolutional layer in dark block to fit our planned re-
parameterized model design strategy.

Table 5: Ablation study on planned RepResidual model.

Model APval APval
50 APval

75 APval
S APval

M APval
L

base (YOLOR-W6) 54.82% 72.39% 59.95% 39.68% 59.38% 68.30%
RepCSP 54.67% 72.50% 59.58% 40.22% 59.61% 67.87%
RCSP 54.36% 71.95% 59.54% 40.15% 59.02% 67.44%
RepRCSP 54.85%72.51%60.08%40.53% 59.52% 68.06%

base (YOLOR-CSP) 50.81% 69.47% 55.28% 33.74% 56.01% 65.38%
RepRCSP 50.91%69.54%55.55%34.44% 55.74% 65.46%

8



Figure 8: Objectness map predicted by different methods at auxiliary head and lead head.

5.4.3 Proposed assistant loss for auxiliary head

In the assistant loss for auxiliary head experiments, we com-
pare the general independent label assignment for lead head
and auxiliary head methods, and we also compare the two
proposed lead guided label assignment methods. We show
all comparison results in Table 6. From the results listed in
Table 6, it is clear that any model that increases assistant
loss can significantly improve the overall performance. In
addition, our proposed lead guided label assignment strat-
egy receives better performance than the general indepen-
dent label assignment strategy in AP, AP50, and AP75. As
for our proposed coarse for assistant and fine for lead label
assignment strategy, it results in best results in all cases. In
Figure 8 we show the objectness map predicted by different
methods at auxiliary head and lead head. From Figure 8 we
find that if auxiliary head learns lead guided soft label, it
will indeed help lead head to extract the residual informa-
tion from the consistant targets.

Table 6: Ablation study on proposed auxiliary head.

Model Size APval APval
50 APval

75

base (v7-E6) 1280 55.6% 73.2% 60.7%
independent 1280 55.8% 73.4% 60.9%
lead guided 1280 55.9% 73.5% 61.0%
coarse-to-fine lead guided 1280 55.9% 73.5% 61.1%
improvement - +0.3 +0.3 +0.4

In Table 7 we further analyze the effect of the proposed
coarse-to-fine lead guided label assignment method on the
decoder of auxiliary head. That is, we compared the results
of with/without the introduction of upper bound constraint.
Judging from the numbers in the Table, the method of con-
straining the upper bound of objectness by the distance from
the center of the object can achieve better performance.

Table 7: Ablation study on constrained auxiliary head.

Model Size APval APval
50 APval

75

base (v7-E6) 1280 55.6% 73.2% 60.7%
aux without constraint 1280 55.9% 73.5% 61.0%
aux with constraint 1280 55.9% 73.5% 61.1%
improvement - +0.3 +0.3 +0.4

Since the proposed YOLOv7 uses multiple pyramids to
jointly predict object detection results, we can directly con-
nect auxiliary head to the pyramid in the middle layer for
training. This type of training can make up for informa-
tion that may be lost in the next level pyramid prediction.
For the above reasons, we designed partial auxiliary head
in the proposed E-ELAN architecture. Our approach is to
connect auxiliary head after one of the sets of feature map
before merging cardinality, and this connection can make
the weight of the newly generated set of feature map not
directly updated by assistant loss. Our design allows each
pyramid of lead head to still get information from objects
with different sizes. Table 8 shows the results obtained us-
ing two different methods, i.e., coarse-to-fine lead guided
and partial coarse-to-fine lead guided methods. Obviously,
the partial coarse-to-fine lead guided method has a better
auxiliary effect.

Table 8: Ablation study on partial auxiliary head.

Model Size APval APval
50 APval

75

base (v7-E6E) 1280 56.3% 74.0% 61.5%
aux 1280 56.5% 74.0% 61.6%
partial aux 1280 56.8% 74.4% 62.1%
improvement - +0.5 +0.4 +0.6

6. Conclusions
In this paper we propose a new architecture of real-

time object detector and the corresponding model scaling
method. Furthermore, we find that the evolving process
of object detection methods generates new research top-
ics. During the research process, we found the replace-
ment problem of re-parameterized module and the alloca-
tion problem of dynamic label assignment. To solve the
problem, we propose the trainable bag-of-freebies method
to enhance the accuracy of object detection. Based on the
above, we have developed the YOLOv7 series of object de-
tection systems, which receives the state-of-the-art results.

7. Acknowledgements
The authors wish to thank National Center for High-

performance Computing (NCHC) for providing computa-
tional and storage resources.

9



Table 9: More comparison (batch=1, no-TRT, without extra object detection training data)

Model #Param. FLOPs Size FPSV 100 APtest / APval APtest
50 APtest

75

YOLOv7-tiny-SiLU 6.2M 13.8G 640 286 38.7% / 38.7% 56.7% 41.7%
PPYOLOE-S [85] 7.9M 17.4G 640 208 43.1% / 42.7% 60.5% 46.6%

YOLOv7 36.9M 104.7G 640 161 51.4% / 51.2% 69.7% 55.9%
YOLOv5-N (r6.1) [23] 1.9M 4.5G 640 159 - / 28.0% - -
YOLOv5-S (r6.1) [23] 7.2M 16.5G 640 156 - / 37.4% - -
PPYOLOE-M [85] 23.4M 49.9G 640 123 48.9% / 48.6% 66.5% 53.0%
YOLOv5-N6 (r6.1) [23] 3.2M 18.4G 1280 123 - / 36.0% - -
YOLOv5-S6 (r6.1) [23] 12.6M 67.2G 1280 122 - / 44.8% - -
YOLOv5-M (r6.1) [23] 21.2M 49.0G 640 122 - / 45.4% - -
YOLOv7-X 71.3M 189.9G 640 114 53.1% / 52.9% 71.2% 57.8%
YOLOR-CSP [81] 52.9M 120.4G 640 106 51.1% / 50.8% 69.6% 55.7%
YOLOX-S [21] 9.0M 26.8G 640 102 40.5% / 40.5% - -

YOLOv5-L (r6.1) [23] 46.5M 109.1G 640 99 - / 49.0% - -
YOLOv5-M6 (r6.1) [23] 35.7M 200.0G 1280 90 - / 51.3% - -
YOLOR-CSP-X [81] 96.9M 226.8G 640 87 53.0% / 52.7% 71.4% 57.9%
YOLOv7-W6 70.4M 360.0G 1280 84 54.9% / 54.6% 72.6% 60.1%
YOLOv5-X (r6.1) [23] 86.7M 205.7G 640 83 - / 50.7% - -
YOLOX-M [21] 25.3M 73.8G 640 81 47.2% / 46.9% - -
PPYOLOE-L [85] 52.2M 110.1G 640 78 51.4% / 50.9% 68.9% 55.6%
YOLOR-P6 [81] 37.2M 325.6G 1280 76 53.9% / 53.5% 71.4% 58.9%
YOLOX-L [21] 54.2M 155.6G 640 69 50.1% / 49.7% - -
YOLOR-W6 [81] 79.8G 453.2G 1280 66 55.2% / 54.8% 72.7% 60.5%
YOLOv5-L6 (r6.1) [23] 76.8M 445.6G 1280 63 - / 53.7% - -

YOLOX-X [21] 99.1M 281.9G 640 58 51.5% / 51.1% - -
YOLOv7-E6 97.2M 515.2G 1280 56 56.0% / 55.9% 73.5% 61.2%
YOLOR-E6 [81] 115.8M 683.2G 1280 45 55.8% / 55.7% 73.4% 61.1%
PPYOLOE-X [85] 98.4M 206.6G 640 45 52.2% / 51.9% 69.9% 56.5%
YOLOv7-D6 154.7M 806.8G 1280 44 56.6% / 56.3% 74.0% 61.8%
YOLOv5-X6 (r6.1) [23] 140.7M 839.2G 1280 38 - / 55.0% - -
YOLOv7-E6E 151.7M 843.2G 1280 36 56.8% / 56.8% 74.4% 62.1%
YOLOR-D6 [81] 151.7M 935.6G 1280 34 56.5% / 56.1% 74.1% 61.9%

F-RCNN-R101-FPN+ [5] 60.0M 246.0G 1333 20 - / 44.0% - -
Deformable DETR [100] 40.0M 173.0G - 19 - / 46.2% - -
Swin-B (C-M-RCNN) [52] 145.0M 982.0G 1333 11.6 - / 51.9% - -
DETR DC5-R101 [5] 60.0M 253.0G 1333 10 - / 44.9% - -
EfficientDet-D7x [74] 77.0M 410.0G 1536 6.5 55.1% / 54.4% 72.4% 58.4%
Dual-Swin-T (C-M-RCNN) [47] 113.8M 836.0G 1333 6.5 - / 53.6% - -
ViT-Adapter-B [7] 122.0M 997.0G - 4.4 - / 50.8% - -
Dual-Swin-B (HTC) [47] 235.0M - 1600 2.5 58.7% / 58.4% - -
Dual-Swin-L (HTC) [47] 453.0M - 1600 1.5 59.4% / 59.1% - -

Model #Param. FLOPs Size FPSA100 APtest / APval APtest
50 APtest

75

DN-Deformable-DETR [41] 48.0M 265.0G 1333 23.0 - / 48.6% - -
ConvNeXt-B (C-M-RCNN) [53] - 964.0G 1280 11.5 - / 54.0% 73.1% 58.8%
Swin-B (C-M-RCNN) [52] - 982.0G 1280 10.7 - / 53.0% 71.8% 57.5%
DINO-5scale (R50) [89] 47.0M 860.0G 1333 10.0 - / 51.0% - -
ConvNeXt-L (C-M-RCNN) [53] - 1354.0G 1280 10.0 - / 54.8% 73.8% 59.8%
Swin-L (C-M-RCNN) [52] - 1382.0G 1280 9.2 - / 53.9% 72.4% 58.8%
ConvNeXt-XL (C-M-RCNN) [53] - 1898.0G 1280 8.6 - / 55.2% 74.2% 59.9%

8. More comparison
YOLOv7 surpasses all known object detectors in both

speed and accuracy in the range from 5 FPS to 160 FPS and
has the highest accuracy 56.8% AP test-dev / 56.8% AP
min-val among all known real-time object detectors with 30
FPS or higher on GPU V100. YOLOv7-E6 object detector
(56 FPS V100, 55.9% AP) outperforms both transformer-
based detector SWIN-L Cascade-Mask R-CNN (9.2 FPS
A100, 53.9% AP) by 509% in speed and 2% in accuracy,

and convolutional-based detector ConvNeXt-XL Cascade-
Mask R-CNN (8.6 FPS A100, 55.2% AP) by 551% in speed
and 0.7% AP in accuracy, as well as YOLOv7 outperforms:
YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, De-
formable DETR, DINO-5scale-R50, ViT-Adapter-B and
many other object detectors in speed and accuracy. More
over, we train YOLOv7 only on MS COCO dataset from
scratch without using any other datasets or pre-trained
weights.

10



Figure 9: Comparison with other object detectors.

Figure 10: Comparison with other real-time object detectors.

Table 10: Comparison of different setting.

Model Presicion IoU threshold APval

YOLOv7-X FP16 (default) 0.65 (default) 52.9%
YOLOv7-X FP32 0.65 53.0%
YOLOv7-X FP16 0.70 53.0%
YOLOv7-X FP32 0.70 53.1%
improvement - - +0.2%

* Similar to meituan/YOLOv6 and PPYOLOE, our model could
get higher AP when set higher IoU threshold.

The maximum accuracy of the YOLOv7-E6E (56.8%
AP) real-time model is +13.7% AP higher than the cur-
rent most accurate meituan/YOLOv6-s model (43.1% AP)
on COCO dataset. Our YOLOv7-tiny (35.2% AP, 0.4
ms) model is +25% faster and +0.2% AP higher than
meituan/YOLOv6-n (35.0% AP, 0.5 ms) under identical
conditions on COCO dataset and V100 GPU with batch=32.

Figure 11: Comparison with other real-time object detectors.

11



References
[1] anonymous. Designing network design strategies. anony-

mous submission, 2022. 3
[2] Irwan Bello, William Fedus, Xianzhi Du, Ekin Dogus

Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon Shlens,
and Barret Zoph. Revisiting ResNets: Improved training
and scaling strategies. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 34, 2021. 2

[3] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. YOLOv4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020.
2, 6, 7

[4] Yue Cao, Thomas Andrew Geddes, Jean Yee Hwa Yang,
and Pengyi Yang. Ensemble deep learning in bioinformat-
ics. Nature Machine Intelligence, 2(9):500–508, 2020. 2

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nico-
las Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 213–229, 2020. 10

[6] Kean Chen, Weiyao Lin, Jianguo Li, John See, Ji Wang, and
Junni Zou. AP-loss for accurate one-stage object detection.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), 43(11):3782–3798, 2020. 2

[7] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for
dense predictions. arXiv preprint arXiv:2205.08534, 2022.
10

[8] Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae
Lee. Gaussian YOLOv3: An accurate and fast object detec-
tor using localization uncertainty for autonomous driving.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 502–511, 2019. 5

[9] Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen,
Mengchen Liu, Lu Yuan, and Lei Zhang. Dynamic head:
Unifying object detection heads with attentions. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7373–7382, 2021.
2

[10] Xiaohan Ding, Honghao Chen, Xiangyu Zhang, Kaiqi
Huang, Jungong Han, and Guiguang Ding. Re-
parameterizing your optimizers rather than architectures.
arXiv preprint arXiv:2205.15242, 2022. 2

[11] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong
Han. ACNet: Strengthening the kernel skeletons for pow-
erful CNN via asymmetric convolution blocks. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 1911–1920, 2019. 2

[12] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and
Guiguang Ding. Diverse branch block: Building a con-
volution as an inception-like unit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10886–10895, 2021. 2

[13] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong
Han, Guiguang Ding, and Jian Sun. RepVGG: Making
VGG-style convnets great again. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13733–13742, 2021. 2, 4

[14] Xiaohan Ding, Xiangyu Zhang, Yizhuang Zhou, Jungong
Han, Guiguang Ding, and Jian Sun. Scaling up your ker-
nels to 31x31: Revisiting large kernel design in CNNs. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2022. 2

[15] Piotr Dollár, Mannat Singh, and Ross Girshick. Fast and
accurate model scaling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 924–932, 2021. 2, 3

[16] Xianzhi Du, Barret Zoph, Wei-Chih Hung, and Tsung-Yi
Lin. Simple training strategies and model scaling for object
detection. arXiv preprint arXiv:2107.00057, 2021. 2

[17] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott,
and Weilin Huang. TOOD: Task-aligned one-stage object
detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 3490–3499,
2021. 2, 5

[18] Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz
Hertlein, Claudius Glaeser, Fabian Timm, Werner Wies-
beck, and Klaus Dietmayer. Deep multi-modal object de-
tection and semantic segmentation for autonomous driv-
ing: Datasets, methods, and challenges. IEEE Transac-
tions on Intelligent Transportation Systems, 22(3):1341–
1360, 2020. 1

[19] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin,
Dmitry P Vetrov, and Andrew G Wilson. Loss sur-
faces, mode connectivity, and fast ensembling of DNNs.
Advances in Neural Information Processing Systems
(NeurIPS), 31, 2018. 2

[20] Zheng Ge, Songtao Liu, Zeming Li, Osamu Yoshie, and
Jian Sun. OTA: Optimal transport assignment for object
detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
303–312, 2021. 2, 5

[21] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. YOLOX: Exceeding YOLO series in 2021. arXiv
preprint arXiv:2107.08430, 2021. 1, 2, 7, 10

[22] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. NAS-FPN:
Learning scalable feature pyramid architecture for object
detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
7036–7045, 2019. 2

[23] Jocher Glenn. YOLOv5 release v6.1. https://github.com/
ultralytics/yolov5/releases/tag/v6.1, 2022. 2, 7, 10

[24] Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Ex-
pandNets: Linear over-parameterization to train compact
convolutional networks. Advances in Neural Information
Processing Systems (NeurIPS), 33:1298–1310, 2020. 2

[25] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, and Chang Xu. GhostNet: More features from cheap
operations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1580–1589, 2020. 1

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

12

https://github.com/ultralytics/yolov5/releases/tag/v6.1
https://github.com/ultralytics/yolov5/releases/tag/v6.1


ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 770–778, 2016. 1, 4, 5

[27] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for Mo-
bileNetV3. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1314–1324, 2019. 1

[28] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient con-
volutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017. 1

[29] Mu Hu, Junyi Feng, Jiashen Hua, Baisheng Lai, Jian-
qiang Huang, Xiaojin Gong, and Xiansheng Hua. On-
line convolutional re-parameterization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 2

[30] Miao Hu, Yali Li, Lu Fang, and Shengjin Wang. A2-FPN:
Attention aggregation based feature pyramid network for
instance segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 15343–15352, 2021. 2

[31] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E
Hopcroft, and Kilian Q Weinberger. Snapshot ensembles:
Train 1, get m for free. International Conference on Learn-
ing Representations (ICLR), 2017. 2

[32] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4700–4708, 2017. 2, 4, 5

[33] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. In
Conference on Uncertainty in Artificial Intelligence (UAI),
2018. 2

[34] Paul F Jaeger, Simon AA Kohl, Sebastian Bickel-
haupt, Fabian Isensee, Tristan Anselm Kuder, Heinz-Peter
Schlemmer, and Klaus H Maier-Hein. Retina U-Net: Em-
barrassingly simple exploitation of segmentation supervi-
sion for medical object detection. In Machine Learning for
Health Workshop, pages 171–183, 2020. 1

[35] Hakan Karaoguz and Patric Jensfelt. Object detection ap-
proach for robot grasp detection. In IEEE International
Conference on Robotics and Automation (ICRA), pages
4953–4959, 2019. 1

[36] Kang Kim and Hee Seok Lee. Probabilistic anchor as-
signment with iou prediction for object detection. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 355–371, 2020. 5

[37] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6399–6408, 2019. 2

[38] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, and Zhuowen Tu. Deeply-supervised nets. In Arti-
ficial Intelligence and Statistics, pages 562–570, 2015. 5

[39] Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok
Bae, and Jongyoul Park. An energy and GPU-computation
efficient backbone network for real-time object detection.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW),
pages 0–0, 2019. 2, 3

[40] Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and
Xiaogang Wang. GS3D: An efficient 3d object detection
framework for autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1019–1028, 2019. 1

[41] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M
Ni, and Lei Zhang. DN-DETR: Accelerate detr training
by introducing query denoising. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13619–13627, 2022. 10

[42] Shuai Li, Chenhang He, Ruihuang Li, and Lei Zhang. A
dual weighting label assignment scheme for object detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 9387–
9396, 2022. 2, 5

[43] Xiang Li, Wenhai Wang, Xiaolin Hu, Jun Li, Jinhui Tang,
and Jian Yang. Generalized focal loss v2: Learning reliable
localization quality estimation for dense object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11632–11641,
2021. 5

[44] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin
Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized focal
loss: Learning qualified and distributed bounding boxes for
dense object detection. Advances in Neural Information
Processing Systems (NeurIPS), 33:21002–21012, 2020. 5

[45] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. arXiv preprint arXiv:2203.16527, 2022. 2

[46] Zhuoling Li, Minghui Dong, Shiping Wen, Xiang Hu, Pan
Zhou, and Zhigang Zeng. CLU-CNNs: Object detection for
medical images. Neurocomputing, 350:53–59, 2019. 1

[47] Tingting Liang, Xiaojie Chu, Yudong Liu, Yongtao Wang,
Zhi Tang, Wei Chu, Jingdong Chen, and Haibin Ling. CB-
NetV2: A composite backbone network architecture for ob-
ject detection. arXiv preprint arXiv:2107.00420, 2021. 5,
10

[48] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song
Han. Memory-efficient patch-based inference for tiny deep
learning. Advances in Neural Information Processing Sys-
tems (NeurIPS), 34:2346–2358, 2021. 1

[49] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song
Han, et al. MCUNet: Tiny deep learning on IoT de-
vices. Advances in Neural Information Processing Systems
(NeurIPS), 33:11711–11722, 2020. 1

[50] Yuxuan Liu, Lujia Wang, and Ming Liu. YOLOStereo3D:
A step back to 2D for efficient stereo 3D detection. In
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 13018–13024, 2021. 5

[51] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong,

13



et al. Swin transformer v2: Scaling up capacity and res-
olution. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 2

[52] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 10012–10022, 2021. 10

[53] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A ConvNet for
the 2020s. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11976–11986, 2022. 10

[54] Rangi Lyu. NanoDet-Plus. https://github.com/RangiLyu/
nanodet/releases/tag/v1.0.0-alpha-1, 2021. 1, 2

[55] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun. ShuffleNet V2: Practical guidelines for efficient CNN
architecture design. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 116–131, 2018.
1, 3

[56] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan
Kalkan. A ranking-based, balanced loss function unifying
classification and localisation in object detection. Advances
in Neural Information Processing Systems (NeurIPS),
33:15534–15545, 2020. 2

[57] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan
Kalkan. Rank & sort loss for object detection and in-
stance segmentation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
3009–3018, 2021. 2

[58] Shuvo Kumar Paul, Muhammed Tawfiq Chowdhury,
Mircea Nicolescu, Monica Nicolescu, and David Feil-
Seifer. Object detection and pose estimation from rgb and
depth data for real-time, adaptive robotic grasping. In Ad-
vances in Computer Vision and Computational Biology,
pages 121–142. 2021. 1

[59] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. De-
tectoRS: Detecting objects with recursive feature pyramid
and switchable atrous convolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10213–10224, 2021. 2

[60] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
10428–10436, 2020. 2

[61] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
779–788, 2016. 2, 5

[62] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster,
stronger. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
7263–7271, 2017. 2

[63] Joseph Redmon and Ali Farhadi. YOLOv3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 1, 2

[64] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding
box regression. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 658–666, 2019. 2

[65] Byungseok Roh, JaeWoong Shin, Wuhyun Shin, and
Saehoon Kim. Sparse DETR: Efficient end-to-end ob-
ject detection with learnable sparsity. arXiv preprint
arXiv:2111.14330, 2021. 5

[66] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. MobileNetV2: In-
verted residuals and linear bottlenecks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4510–4520, 2018. 1

[67] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang,
Yurong Chen, and Xiangyang Xue. Object detection
from scratch with deep supervision. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI),
42(2):398–412, 2019. 5

[68] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 4

[69] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, et al. Sparse R-CNN: End-to-end ob-
ject detection with learnable proposals. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14454–14463, 2021. 2

[70] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1–9, 2015. 5

[71] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826, 2016. 2

[72] Mingxing Tan and Quoc Le. EfficientNet: Rethinking
model scaling for convolutional neural networks. In Inter-
national Conference on Machine Learning (ICML), pages
6105–6114, 2019. 2, 3

[73] Mingxing Tan and Quoc Le. EfficientNetv2: Smaller mod-
els and faster training. In International Conference on Ma-
chine Learning (ICML), pages 10096–10106, 2021. 2

[74] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficient-
Det: Scalable and efficient object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10781–10790, 2020. 2, 10

[75] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Advances in Neural
Information Processing Systems (NeurIPS), 30, 2017. 2, 6

[76] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
Fully convolutional one-stage object detection. In Proceed-

14

https://github.com/RangiLyu/nanodet/releases/tag/v1.0.0-alpha-1
https://github.com/RangiLyu/nanodet/releases/tag/v1.0.0-alpha-1


ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 9627–9636, 2019. 2

[77] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
A simple and strong anchor-free object detector. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 44(4):1922–1933, 2022. 2

[78] Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff
Zhu, Oncel Tuzel, and Anurag Ranjan. An im-
proved one millisecond mobile backbone. arXiv preprint
arXiv:2206.04040, 2022. 2

[79] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Scaled-YOLOv4: Scaling cross stage
partial network. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 13029–13038, 2021. 2, 3, 6, 7

[80] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu,
Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau Yeh. CSP-
Net: A new backbone that can enhance learning capabil-
ity of CNN. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 390–391, 2020. 1

[81] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao.
You only learn one representation: Unified network for
multiple tasks. arXiv preprint arXiv:2105.04206, 2021. 1,
2, 6, 7, 10

[82] Jianfeng Wang, Lin Song, Zeming Li, Hongbin Sun, Jian
Sun, and Nanning Zheng. End-to-end object detection
with fully convolutional network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15849–15858, 2021. 2, 5

[83] Bichen Wu, Chaojian Li, Hang Zhang, Xiaoliang Dai,
Peizhao Zhang, Matthew Yu, Jialiang Wang, Yingyan Lin,
and Peter Vajda. FBNetv5: Neural architecture search for
multiple tasks in one run. arXiv preprint arXiv:2111.10007,
2021. 1

[84] Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin,
Gabriel Bender, Yongzhe Wang, Pieter-Jan Kindermans,
Mingxing Tan, Vikas Singh, and Bo Chen. MobileDets:
Searching for object detection architectures for mobile ac-
celerators. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3825–3834, 2021. 1

[85] Shangliang Xu, Xinxin Wang, Wenyu Lv, Qinyao
Chang, Cheng Cui, Kaipeng Deng, Guanzhong Wang,
Qingqing Dang, Shengyu Wei, Yuning Du, et al. PP-
YOLOE: An evolved version of YOLO. arXiv preprint
arXiv:2203.16250, 2022. 2, 7, 8, 10

[86] Zetong Yang, Yin Zhou, Zhifeng Chen, and Jiquan Ngiam.
3D-MAN: 3D multi-frame attention network for object de-
tection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1863–1872, 2021. 5

[87] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor
Darrell. Deep layer aggregation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2403–2412, 2018. 1

[88] Guanghua Yu, Qinyao Chang, Wenyu Lv, Chang Xu, Cheng
Cui, Wei Ji, Qingqing Dang, Kaipeng Deng, Guanzhong

Wang, Yuning Du, et al. PP-PicoDet: A better real-
time object detector on mobile devices. arXiv preprint
arXiv:2111.00902, 2021. 1

[89] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. DINO: DETR
with improved denoising anchor boxes for end-to-end ob-
ject detection. arXiv preprint arXiv:2203.03605, 2022. 10

[90] Haoyang Zhang, Ying Wang, Feras Dayoub, and Niko Sun-
derhauf. VarifocalNet: An IoU-aware dense object detector.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8514–8523,
2021. 5

[91] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and
Stan Z Li. Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 9759–
9768, 2020. 5

[92] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. ShuffleNet: An extremely efficient convolutional neu-
ral network for mobile devices. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6848–6856, 2018. 1

[93] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan
Yuan, Ping Luo, Wenyu Liu, and Xinggang Wang. BYTE-
Track: Multi-object tracking by associating every detection
box. arXiv preprint arXiv:2110.06864, 2021. 1

[94] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. FAIRMOT: On the fairness of detec-
tion and re-identification in multiple object tracking. Inter-
national Journal of Computer Vision, 129(11):3069–3087,
2021. 1

[95] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang
Ye, and Dongwei Ren. Distance-IoU loss: Faster and bet-
ter learning for bounding box regression. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI),
volume 34, pages 12993–13000, 2020. 2

[96] Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo
Yin, Yuchao Dai, and Ruigang Yang. IoU loss for 2D/3D
object detection. In International Conference on 3D Vision
(3DV), pages 85–94, 2019. 2

[97] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019. 1,
2

[98] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang. UNet++: A nested U-
Net architecture for medical image segmentation. In
Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support, 2018. 5

[99] Benjin Zhu, Jianfeng Wang, Zhengkai Jiang, Fuhang Zong,
Songtao Liu, Zeming Li, and Jian Sun. AutoAssign: Differ-
entiable label assignment for dense object detection. arXiv
preprint arXiv:2007.03496, 2020. 2, 5

[100] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: Deformable trans-
formers for end-to-end object detection. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2021. 10

15



A. Appendix
A.1. Implementation details

A.1.1 Architectures

Figure A1 and Figure A2 show the architectures of the pro-
posed YOLOv7 P5 and YOLOv7 P6, respectively. Please
note that Down, Up, CSPSPP, and the compression rate
of a transition layer of ELAN modules in different models
have a little bit different implementation. The details can be
found at https://github.com/WongKinYiu/yolov7/tree/main/
cfg/deploy.

Figure A1: Architectures of YOLOv7 P5 models.

Figure A2: Architectures of YOLOv7 P6 models.

For E-ELAN architecture, since our edge device do not
support group convolution and shuffle operation, we are
forced to implement it as an equivalence architecture, which
is shown in Figure A3.

Figure A3: Equivalence E-ELAN.

The designed equivalence E-ELAN makes it easier for us
to implement partial auxiliary head. E-ELAN with normal
auxiliary head and partial auxilary head are shown in Figure
A4.

Figure A4: Partial auxilary head on E-ELAN.

Here we show how we make coarse-to-fine constraint
lead head guided label assigner in Figure A5. We make
a dynamic constraint by limiting the decoder of two addi-
tional candidate positive grids (yellow grids in the figure).
Theoretically, yellow grids need to predict the range in [-
1, 2] to fit ground truth bounding box, and we make the
decoder can only predict in the range of [-0.5, 1.5]. This
constraint makes the model can automatically learn the pink
grids and yellow grid at different levels.

Figure A5: Coarse-to-fine lead head guided label assigner.

16

https://github.com/WongKinYiu/yolov7/tree/main/cfg/deploy
https://github.com/WongKinYiu/yolov7/tree/main/cfg/deploy


A.1.2 Hyper-parameters

We have three different training hyper-parameters set-
tings. One is for YOLOv7-tiny, one is for YOLOv7 and
YOLOv7x, and the last one is for YOLOv7-W6, YOLOv7-
E6, YOLOv7-D6, and YOLOv7-E6E. The hyper-parameter
setting are follow updated YOLOR code, which is
described in https://github.com/WongKinYiu/yolor#yolor.
These three hyper-parameter settings can be found
at https://github.com/WongKinYiu/yolov7/tree/main/data,
and they are respectively named by “hyp.scratch.tiny.yaml”,
“hyp.scratch.p5.yaml”, and “hyp.scratch.p6.yaml”.

An additional training hyper-parameter is top k of
simOTA. To train 640 × 640 models, we follow YOLOX
to use k = 10. For 1280 × 1280 models, as described in
previous section, 3-NN candidate postive grids are used in
our training. That is to say, when input resolution grows,
the candidate positive grids will grow along two directions,
not four directions. Therefore, we set k = 20 on simOTA
to train 1280 × 1280 models.

A.1.3 Re-parameterization

Merging Convolution-BatchNorm-Activation into
Convolution-Activation at inference time is a well-
known technique, and its cprresponding formulas are
shown in Figure A6. RepConv has become a popular
re-parameterization method in recent years. Here we show
how the YOLOR implicit knowledge can be merged into
convolutional layer when addition or multiplication is used
to combine implicit knowledge and representation. Figure
A7 shows the formula to re-parameterize the implicit
knowledge of YOLOR and the convolutional layer.

Figure A6: Batch normalization as trainable BoF.

Figure A7: YOLOR implicit knowledge as trainable BoF.

A.2. More results

Figure A8: Architectures of YOLOv7-mask and YOLOv7-pose.

A.2.1 YOLOv7-mask

We integrate YOLOv7 with BlendMask [1] to do instance
segmentation. We simply fine-tune YOLOv7 object detec-
tion model on MS COCO instance segmentation dataset and
trained for 30 epochs. It achieves state-of-the-art real-time
instance segmentation result. The architecture of YOLOv7-
mask and the corresponding results are shown in Figure A8
(a) and Figure A9, respectively.

Figure A9: Sample results after applying YOLOv7-mask.

A.2.2 YOLOv7-pose

We integrate YOLOv7 with YOLO-Pose [2] to do keypoint
detection. We follow the same setting as [2] to fine-tune
YOLOv7-W6 people detection model on MS COCO key-
point detection dataset. YOLOv7-W6-pose achieves state-
of-the-art real-time pose estimation result. The architecture
and sample results are shown in Figure A8 (b) and Figure
A10, respectively.

Figure A10: Sample results after applying YOLOv7-pose.

References
[1] Chen et al. BlendMask: Top-down meets bottom-up for

instance segmentation. CVPR, 2020. 17
[2] Maji et al. YOLO-Pose: Enhancing YOLO for Multi

Person Pose Estimation Using Object Keypoint Similarity
Loss. CVPRW, 2022. 17

17

https://github.com/WongKinYiu/yolor#yolor
https://github.com/WongKinYiu/yolov7/tree/main/data

